Информатика

Пояснительная записка

Примерная программа учебного предмета «Информатика» на уровне общего образования составлена требований основного на основе Федерального государственного образовательного основного стандарта общего образования, предъявляемых к результатам освоения основной образовательной программы и с учетом требований к уровню подготовки обучающихся для проведения основного государственного экзамена по информатике.

Освоение программы учебного предмета «Информатика» направлено на:

- формирование информационной и алгоритмической культуры;
- формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе;
- развитие умений составить и записать алгоритм для конкретного исполнителя;
- формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Программа разработана с учетом актуальных задач воспитания, обучения и развития обучающихся, и условий, необходимых для развития их личностных и познавательных качеств, психологическими, возрастными и другими особенностями обучающихся.

Программа составлена на основе модульного принципа построения учебного материала, не определяет количество часов на изучение отдельного модуля, не ограничивает возможность его изучения в том или ином классе или распределения материала модуля внутри курса, не фиксирует порядок изучения материалов отдельных модулей

Программа содержит необязательные к изучению на базовом уровне элементы содержания (выделены курсивом), которые можно отнести к углубленному уровню изучения информатики на уровне основного общего образования.

Информатика имеет очень большое и всё возрастающее число междисциплинарных связей, причём как на уровне понятийного аппарата, так и на уровне инструментария. Многие положения, развиваемые информатикой, рассматриваются как основа создания и использования информационных и коммуникационных технологий (ИКТ) — одного из наиболее значимых технологических достижений современной цивилизации.

Стремительное развитие информационно-коммуникационных технологий, их активное использование во всех сферах деятельности человека, требует профессиональной мобильности И готовности К саморазвитию образованию. В непрерывному ЭТИХ условиях возрастает роль образования, фундаментального обеспечивающего профессиональную мобильность человека, готовность его к освоению новых технологий, в том числе информационных.

Вместе с математикой, физикой, химией, биологией курс информатики закладывает основы естественно-научного мировоззрения.

Содержание учебного предмета «Информатика»

І. Введение

1. Информация и информационные процессы

Происхождение термина «информатика». Различные аспекты слова «информация»: информация как данные, которые могут быть обработаны автоматизированной системой, и информация как сведения, предназначенные для восприятия человеком.

Примеры данных: тексты, числа. Дискретность данных. Возможность описания непрерывных объектов и процессов с помощью дискретных моделей.

Информационные процессы — процессы, связанные с хранением, преобразованием и передачей данных. Примеры информационных процессов в окружающем мире. Анализ данных.

2. Компьютер – универсальное устройство обработки данных

Устройство компьютера: процессор, оперативная память, внешняя энергонезависимая память, устройства ввода-вывода.

Роль программ в использовании компьютера.

Носители информации, используемые в ИКТ, их история и перспективы развития. Представление об объёмах данных и скоростях доступа, характерных для различных видов носителей.

История и тенденции развития компьютеров, улучшение характеристик компьютеров. Суперкомпьютеры.

Физические ограничения на значения характеристик компьютеров.

Параллельные вычисления.

II. Математические основы информатики

1. Тексты и кодирование

Символ. Алфавит — конечное множество символов. Текст — конечная последовательность символов данного алфавита. Количество различных текстов данной длины в данном алфавите.

Разнообразие языков и алфавитов. Естественные и формальные языки. Алфавит текстов на русском языке. Кодирование символов одного алфавита с помощью кодовых слов в другом алфавите; кодовая таблица, декодирование.

Двоичный алфавит. Представление данных в компьютере как текстов в двоичном алфавите.

Двоичные коды с фиксированной длиной кодового слова. Разрядность кода – длина кодового слова. Примеры двоичных кодов с разрядностью 8, 16, 32.

Единицы измерения длины двоичных текстов: бит, байт, производные от них единицы. Количество информации, содержащееся в сообщении.

Размер (длина) текста как мера количества информации. Подход А.Н.Колмогорова к определению количества информации.

Зависимость количества кодовых комбинаций от разрядности кода. Таблицы кодировки с алфавитом, отличным от двоичного. Код ASCII. Кодировки кириллицы. Примеры кодирования букв национальных алфавитов. Представление о стандарте Unicode.

Искажение информации при передаче. Коды, исправляющие ошибки. Возможность однозначного декодирования для кодов с различной длиной кодовых слов.

2. Дискретизация

Измерение и дискретизация. Общее представление о цифровом представлении аудиовизуальных и других непрерывных данных.

Кодирование графической информации. Формирование изображения на экране монитора. Кодирование цвета. Цветовые модели. Модели RGB, HSB, СМУ и СМУК. Глубина кодирования. Знакомство с растровой и векторной графикой.

Кодирование звука. Разрядность и частота записи. Количество каналов записи.

Оценка количественных параметров, связанных с представлением и хранением изображений и звуковых файлов.

3. Системы счисления

Двоичная системой счисления, запись целых чисел в пределах от 0 до 1024. Перевод натуральных чисел из десятичной системы счисления в двоичную и из двоичной в десятичную.

Восьмеричная и шестнадцатеричная системы счисления. Перевод натуральных чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно. Арифметические действия в двоичной системе счисления.

4. Элементы комбинаторики, теории множеств и математической логики.

Формулы перемножения и сложения количества вариантов. Количество текстов данной длины в данном алфавите.

Множество. Теоретико-множественные операции (объединение, пересечение, дополнение). Определение количества элементов в множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения. Диаграммы Эйлера-Венна.

Утверждения. Истинность утверждений. Логические значения, логические операции и логические выражения. Операции «и», «или» и «не». Правила записи логических выражений, приоритеты логических операций.

Таблицы истинности. Построение таблиц истинности для логических выражений. Законы алгебры логики. Логические элементы. Схемы логических элементов и их физическая (электронная) реализация. Знакомство с логическими основами компьютера.

5. Дискретные математические объекты

Список. Первый элемент, последний элемент, предыдущий элемент, следующий элемент. Вставка, удаление и замена элемента.

Дерево. Корень, лист, вершина (узел). Предшествующая вершина, последующие вершины. Поддерево. Высота дерева. *Бинарное дерево*. *Генеалогическое дерево*.

Граф. Вершина, ребро, путь. Ориентированные и неориентированные графы. Начальная вершина (источник) и конечная вершина (сток) в ориентированном графе. Длина (вес) ребра и пути. Понятие минимального пути. Матрица смежности графа (с длинами ребер).

III. Алгоритмы и элементы программирования

1. Исполнители и алгоритмы. Управление исполнителями

Исполнители. Состояния, возможные обстановки и система команд исполнителя; команды-приказы и команды-запросы; отказ исполнителя. Необходимость формального описания исполнителя.

Алгоритм как план управления исполнителем (исполнителями). Алгоритмический язык (язык программирования) – формальный язык для алгоритмов. Программа - запись алгоритма конкретном на алгоритмическом языке. Компьютер – автоматическое устройство, способное управлять составленной программе исполнителями, заранее Непосредственное (ручное) выполняющими программное команды. управление исполнителем.

Блок-схема, как наглядный способ представления алгоритма. Основные типы блоков. Словесное описание алгоритмов, его отличия от описания на формальном алгоритмическом языке.

Системы программирования. Средства создания и выполнения программ. Понятие об этапах разработки программ и приемах отладки программ.

Управление. Сигнал. Обратная связь. Примеры: компьютер и управляемый им исполнитель; компьютер, получающий сигналы от цифровых датчиков в ходе наблюдений и экспериментов, и управляющий реальными (в том числе движущимися) устройствами.

2. Алгоритмические конструкции

Линейные (неветвящиеся) алгоритмы. Их ограниченность: невозможность предусмотреть зависимость последовательности выполняемых действий от исходных данных.

Простые и составные условия (утверждения). Соблюдение и несоблюдение условия (истинность и ложность утверждения). Запись составных условий. Логические выражения.

Конструкции ветвления (условный оператор): полная неполная форма.

Конструкция повторения (цикл): цикл «пока», «повторить ... раз», «для». Проверка условия выполнения цикла до начала выполнения тела цикла и после выполнения тела цикла: постусловие и предусловие цикла. Инвариант цикла.

Величина (переменная): имя и значение. Типы величин: целые, вещественные, символьные, строковые, логические. Табличные величины (массивы). Оператор присваивания. *Представление о структурах данных*.

Запись алгоритмических конструкций в выбранном языке программирования.

Примеры записи команд ветвления и повторения и других конструкций в различных алгоритмических языках.

3. Построение алгоритмов и программ

Составление алгоритмов и программ по управлению исполнителями. Примеры задач обработки данных:

- нахождение минимального и максимального числа из двух, трёх, четырёх данных чисел;
- нахождение всех корней заданного квадратного уравнения;
- заполнение числового массива в соответствии с формулой или путём ввода чисел;
- нахождение суммы элементов данной конечной числовой последовательности или массива;
- нахождение минимального (максимального) элемента массива.

Знакомство с алгоритмами решения этих задач. Реализации этих алгоритмов в выбранной среде программирования.

Знакомство с постановками более сложных задач обработки данных и алгоритмами их решения: сортировка массива, выполнение поэлементных операций с массивами; обработка целых чисел, представленных записями в десятичной и двоичной системах счисления, нахождение наибольшего общего делителя (алгоритм Евклида).

Понятие об этапах разработки программ: составление требований к программе, выбор алгоритма и его реализация в виде программы на выбранном алгоритмическом языке, отладка программы с помощью выбранной системы программирования, тестирование.

Простейшие приёмы диалоговой отладки программ (выбор точки останова, пошаговое выполнение, просмотр значений величин, отладочный вывод).

Знакомство с документированием программ. Составление описание программы по образцу.

4. Анализ алгоритмов

Сложность вычисления: количество выполненных операций, размер используемой памяти; их зависимость от размера исходных данных. Примеры коротких программ, выполняющих много шагов по обработке небольшого объёма данных; примеры коротких программ, выполняющих обработку большого объёма данных.

Определение возможных результатов работы алгоритма при данном множестве входных данных; определение возможных входных данных, приводящих к данному результату. Примеры описания объектов и процессов с

помощью набора числовых характеристик, а также зависимостей между этими характеристиками, выражаемыми с помощью формул.

5. Математическое моделирование

Понятие математической модели. Её отличия от натурной модели и от словесного (литературного) описания объекта. Использование компьютеров при анализе математических моделей.

Примеры использования математических (компьютерных) моделей при решении научно-технических задач. Представление о цикле моделирования: построение математической модели, её программная реализация, проверка на простых примерах (тестирование), проведение компьютерного эксперимента, анализ его результатов, уточнение модели.

IV. Использование программных систем и сервисов

1. Файловая система

Файловая система. Каталог (директория). Основные операции при работе с файлами: создание, редактирование, копирование, перемещение, удаление. Типы файлов.

Характерные размеры файлов различных типов (страница печатного текста, полный текст романа «Евгений Онегин», минутный видеоклип, полуторачасовой фильм, файл данных космических наблюдений, файл промежуточных данных при математическом моделировании сложных физических процессов и др.).

Архивирование и разархивирование.

Файловый менеджер.

Поиск в файловой системе.

2. Подготовка текстов и демонстрационных материалов

Текстовые документы и их структурные элементы (страница, абзац, строка, слово, символ). Текстовый редактор. Операции редактирования текстов. Создание структурированного текста. Стилевое форматирование.

Включение в текстовый документ списков, таблиц, и графических объектов. Включение в текстовый документ диаграмм, формул, нумерации страниц, колонтитулов, ссылок и др. История изменений.

Проверка правописания, словари.

Инструменты ввода текста с использованием сканера, программ распознавания, расшифровки устной речи. Компьютерный перевод.

Понятие о системе стандартов по информации, библиотечному и издательскому делу. Деловая переписка, учебная публикация, коллективная работа. Реферат и аннотация.

Подготовка компьютерных презентаций. Включение в презентацию аудиовизуальных объектов.

Знакомство с графическими редакторами. Операции редактирования графических объектов: изменение размера, сжатие изображения; обрезка; коррекция цвета, яркости и контрастности; поворот, отражение. Знакомство с обработкой фотографий. Геометрические и стилевые преобразования. Использование примитивов и шаблонов.

Ввод изображений с использованием различных цифровых устройств (цифровых фотоаппаратов и микроскопов, видеокамер, сканеров и т. д.).

Средства компьютерного проектирования. Чертежи и работа с ними. Базовые операции: выделение, объединение, геометрические преобразования фрагментов и компонентов. Диаграммы, планы, карты.

3. Электронные (динамические) таблицы

Электронные (динамические) таблицы. Формулы с использованием абсолютной, относительной и смешанной адресации; преобразование формул при копировании. Выделение диапазона таблицы и упорядочивание (сортировка) его элементов; построение графиков и диаграмм.

4. Базы данных. Поиск информации

Базы данных. Таблица как представление отношения. Поиск данных в готовой базе. Связи между таблицами.

Поиск информации в Интернете. Средства и методика поиска информации. Построение запросов; браузеры. Компьютерные энциклопедии и словари. Компьютерные карты и другие справочные системы. *Поисковые машины*.

5. Работа в информационном пространстве. Информационнокоммуникационные технологии

Компьютерные сети. Интернет. Адресация в Интернете. Доменная система имен. Сайт. Сетевое хранение данных. Большие данные в природе и технике (геномные данные, результаты физических экспериментов, Интернетданные, в частности, данные социальных сетей). Технологии их обработки и хранения.

Виды деятельности в Интернете. Интернет-сервисы: почтовая служба; справочные службы (карты, расписания и т.п.), поисковые службы, службы обновления программного обеспечения и др.

Компьютерные вирусы и другие вредоносные программы; защита от них. повышающие безопасность работы Интернете. Проблема подлинности Электронная подпись. полученной информации. сертифицированные сайты и документы. Методы индивидуального и коллективного размещения новой информации в Интернете. Взаимодействие компьютерных сетей: электронная почта, чат, телеконференция и др.

Гигиенические, эргономические и технические условия эксплуатации средств ИКТ. Экономические, правовые и этические аспекты их использования. Личная информация, средства ее защиты. Организация личного информационного пространства.

Основные этапы и тенденции развития ИКТ. Стандарты в сфере информатики и ИКТ. *Примеры стандартов докомпьютерной и компьютерной эры*.

Предметные результаты

Введение

Выпускник научится:

• Использовать термины «информация», «сообщение», «данные», «кодирование», «сигнал», «обратная связь», а также понимать разницу между употреблением этих терминов в обыденной речи и в информатике;

• приводить примеры информационных процессов – процессов, связанные с хранением, преобразованием и передачей данных – в живой природе и технике:

Выпускник получит возможность:

• узнать назначение основных компонентов компьютера (процессора, оперативной памяти, внешней энергонезависимой памяти, устройств ввода-вывода), характеристики этих устройств и использовать свои знания в повседневной жизни.

II. «Математические основы информатики»

Выпускник научится:

- описывать размер двоичных текстов, используя термины «бит», «байт» и производные от них; использовать термины, описывающие скорость передачи данных, оценивать время передачи данных;
- кодировать и декодировать тексты по заданной кодовой таблице;
- оперировать понятиями, связанными с передачей данных (источник и приёмник данных: канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи);
- определять минимальную длину кодового слова по заданным алфавиту кодируемого текста и кодовому алфавиту (для кодового алфавита из 2, 3 или 4 символов);
- определять длину кодовой последовательности по длине исходного текста и кодовой таблице равномерного кода;
- записывать в двоичной системе целые числа от 0 до 1024; переводить заданное натуральное число из десятичной записи в двоичную и из двоичной в десятичную; сравнивать числа в двоичной записи; складывать и вычитать числа, записанные в двоичной системе счисления;
- записывать логические выражения составленные с помощью операций «И», «ИЛИ», «НЕ» и скобок, определять истинность такого составного высказывания, если известны значения истинности входящих в него элементарных высказываний;
- определять количество элементов в множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения;
- использовать терминологию, связанную с графами (вершина, ребро, путь, длина ребра и пути), деревьями (корень, лист, высота дерева) и списками (первый элемент, последний элемент, предыдущий элемент, следующий элемент; вставка, удаление и замена элемента);
- описывать граф с помощью матрицы смежности с указанием длин ребер (знание термина «матрица смежности» не обязательно);
- использовать основные способы графического представления числовой информации.

Выпускник получит возможность:

• познакомиться с примерами математических моделей и использования компьютеров при их анализе; понять сходства и различия между

- математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием;
- узнать о том, что любые дискретные данные можно описать, используя алфавит, содержащий только два символа, например, 0 и 1;
- познакомиться с тем, как информация (данные) представляется в современных компьютерах;
- познакомиться с двоичным кодированием текстов и с наиболее употребительными современными кодами;
- познакомиться с примерами использования графов, деревьев и списков при описании реальных объектов и процессов.

III. «Алгоритмы и элементы программирования»

Выпускник научится:

- использовать термины «исполнитель», «алгоритм», «программа», а также понимать разницу между употреблением этих терминов в обыденной речи и в информатике;
- выполнять без использования компьютера («вручную») несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных, записанные на конкретном язык программирования с использованием основных управляющих конструкций последовательного программирования (линейная программа, ветвление, повторение, вспомогательные алгоритмы);
- составлять несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных с использованием основных управляющих конструкций последовательного программирования и записывать их в виде программ на выбранном языке программирования; выполнять эти программы на компьютере;
- использовать величины (переменные) различных типов, табличные величины (массивы), а также выражения, составленные из этих величин; использовать оператор присваивания;
- анализировать предложенный алгоритм, например, определять какие результаты возможны при заданном множестве исходных значений;
- использовать логические значения, операции и выражения с ними;
- записывать на выбранном языке программирования арифметические и логические выражения и вычислять их значения.

Выпускник получит возможность:

- познакомиться с использованием в программах строковых величин и с операциями со строковыми величинами;
- создавать программы для решения задач, возникающих в процессе учебы и вне её;
- познакомиться с задачами обработки данных и алгоритмами их решения;
- познакомиться с понятием «управление», с примерами того, как компьютер управляет различными системами (летательные и космические аппараты, станки, оросительные системы, движущиеся модели и др.).

IV. «Использование программных систем и сервисов»

Выпускник научится:

- оперировать понятиями «файл», «имя файла», «тип файла», «каталог», «маска имен файлов», «файловая система»;
- использовать динамические (электронные) таблицы, в том числе формулы с использованием абсолютной, относительной и смешанной адресации, выделение диапазона таблицы и упорядочивание (сортировку) его элементов; построение диаграмм (круговой и столбчатой);
- использовать табличные (реляционные) базы данных, выполнять отбор строк таблицы, удовлетворяющих определенному условию;
- анализировать доменные имена компьютеров и адреса документов в Интернете;
- проводить поиск информации в сети Интернет по запросам с использованием логических операций.

Выпускник овладеет (как результат применения программных систем и интернет-сервисов в данном курсе и во всем образовательном процессе):

- навыками работы с компьютером; знаниями, умениями и навыками, достаточными для работы с различными видами программных систем и интернет-сервисов (файловые менеджеры, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии); умением описывать работу этих систем и сервисов с использованием соответствующей терминологии;
- различными формами представления данных (таблицы, диаграммы, графики и т. д.);
- приемами безопасной организации своего личного пространства данных с использованием индивидуальных накопителей данных, интернетсервисов и т.п.;
- основами соблюдения норм информационной этики и права.

Выпускник получит возможность (в данном курсе и иной учебной деятельности):

- познакомиться с программными средствами для работы с аудио-
- визуальными данными и соответствующим понятийным аппаратом;
- получить представление о дискретном представлении аудиовизуальных данных;
- практиковаться в использовании основных видов прикладного программного обеспечения (редакторы текстов, электронные таблицы, браузеры и др.);
- познакомиться с примерами использования математического моделирования в современном мире;
- познакомиться с принципами функционирования Интернета и сетевого взаимодействия между компьютерами, с методами поиска в Интернете;
- познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами подлинности (пример: наличие электронной подписи); познакомиться с

- возможными подходами к оценке достоверности информации (пример: сравнение данных из разных источников);
- узнать о том, что в сфере информатики и информационнокомпьютерных технологий (ИКТ) существуют международные и национальные стандарты;
- узнать о структуре современных компьютеров и назначении их элементов;
- получить представление об истории и тенденциях развития ИКТ;
- познакомиться с примерами использования ИКТ в современном мире.